SOS in Biochemistry, Jiwaji University, Gwalior M.Sc. II Semester (2019-20) Paper BCH 205: Fundamentals of Molecular Biology (Unit 1)

ENZYMOLOGY OF DNA REPLICATION

➢A variety of proteins is required during the process of DNA replication.

>The Major Proteins are:

>DNA Polymerases

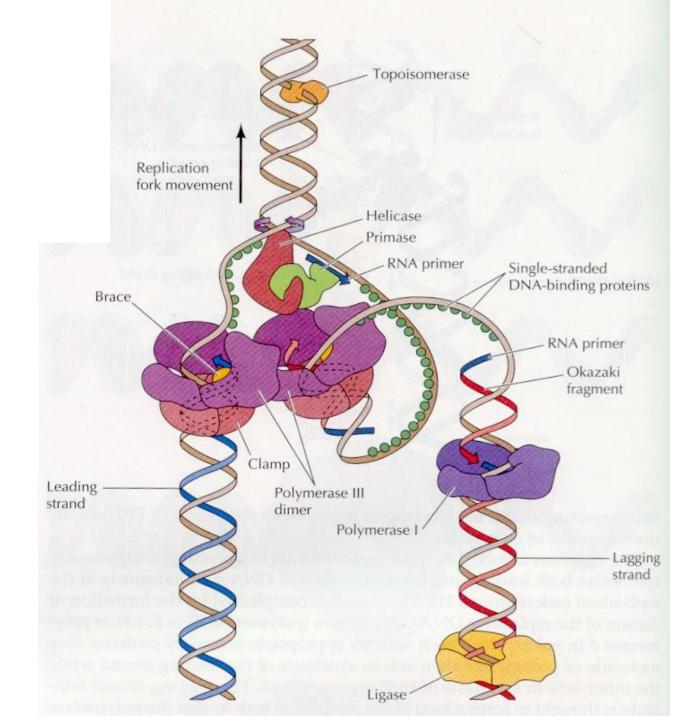
- ➢Primase
- >Ligase
- ≻Helicase

➤ Topoisomerase

Gyrase

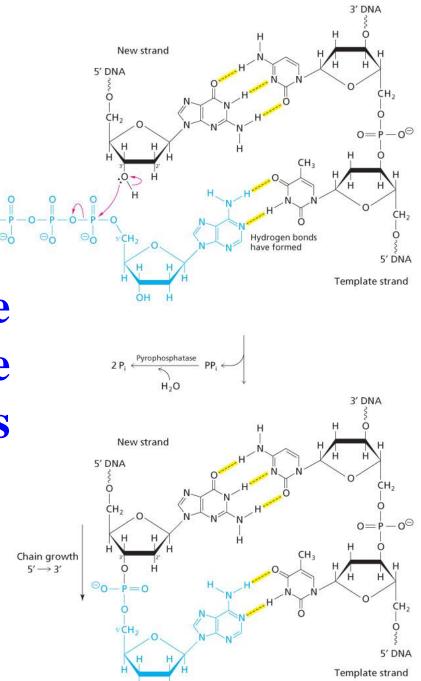
Single Stranded Binding Proteins (SSBs)

DNA synthesis occurs at two places: > Semi-conservative Replication & > DNA Repair Reaction At both places, DNA synthesis is catalyzed by an enzyme i.e., DNA Polymerase


(or more properly as DNA-dependent DNA Polymerase)

We know!!!!!!!!

- 1. Semi-conservative Replication is catalyzed by DNA Polymerase.
- 2. Both prokaryotic and eukaryotic cells contain multiple DNA polymerase activities
- 3. Only few of them actually undertake replication.
- 4. These enzymes are some times called as replicases.
- 5. Both strands are synthesized simultaneously by replicase.
- 6. Different <u>enzyme</u> <u>units</u> are required to synthesize the leading and lagging strands.
- 7. In *E. coli*, both these units contain the same catalytic subunit.
- 8. In other organisms, different catalytic subunits may ^{3/2}be^orequired for each strands. ⁴


We know!!!!!!!!

- 1. Both prokaryotic and eukaryotic cells contain multiple DNA polymerase activities
- 2. Main replicating enzyme is called as replicase.
- 3. Both strands are synthesized simultaneously by replicase.
- 4. Different <u>enzyme</u> <u>units</u> are required to synthesize the leading and lagging strands.
- 5. In *E. coli*, both these units contain the same catalytic subunit.
- 6. In other organisms, different catalytic subunits may be required for each strands.

Prokaryotic DNA Polymerases

DNA polymerases are the enzymes that catalyze the attachment of nucleotides to make new DNA

- In E. coli there are five proteins with polymerase activity
 - **DNA pol I, II, III, IV and V**
 - DNA pol I (minor role in replication) and III (major role in replication, replicase)
 - Normal replication
 - **DNA pol I, II, IV and V**
 - DNA repair and replication of damaged DNA

The DNA Polymerase Family

- A total of 5 different DNAPs have been reported in E. coli
- **DNAP I: functions in repair and replication** (discovered in 1957)
- DNAP II: functions in DNA repair (proven in 1999)
- DNAP III: principal DNA replication enzyme (discovered in 1970) by Thomas Kornberg (son of Arthur Kornberg) & Malcolm Gefter
- **DNAP IV: functions in DNA repair** (discovered in 1999)
- **DNAP V: functions in DNA repair** (discovered in 1999)

To date, a total of 14 different DNA polymerases have been reported in eukaryotes

Arthur Kornberg discovered DNA dependent DNA polymerase

Used an "in vitro" system: the classic biochemical approach

- 1. Grow E. coli
- 2. Lyse cells
- 3. Prepare extract
- 4. Fractionate extract
- 5. Search for DNA polymerase activity using an ASSAY (Incorporate radioactive building blocks, Precipitate DNA chains (nucleotides soluble), Quantify radioactivity.)

1959: NP in Medicine & Physiology (for synthesis of DNA & RNA) Severo Ochoa

A. Kornberg

Nobel Prize for DNA polymerase I

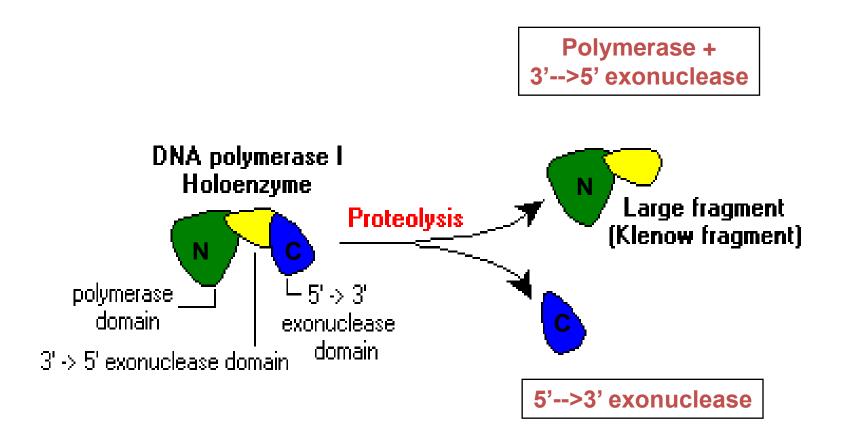
Comparison of DNA Polymerases of E. coli

1	DNA polymerase		
	I	II	III
Structural gene*	polA	<i>pol</i> B	polC (dnaE)
Subunits (number of different types)	1	≥4	≥10
<i>M</i> _r	103,000	88,000 [†]	830,000
$3' \rightarrow 5'$ Exonuclease (proofreading)	Yes	Yes	Yes
$5' \rightarrow 3'$ Exonuclease	Yes	No	No
Polymerization rate (nucleotides/sec)	16–20	40	250-1,000
Processivity (nucleotides added before polymerase dissociates)	3–200	1,500	≥500,000
Mutant viable? Function	Yes! Re	Yes! epair	No Replication

 DNA pol IV: error-prone polymerase
DNA pol V: error-prone polymerase
(both are involved in allowing replication to bypass certain types of damage)

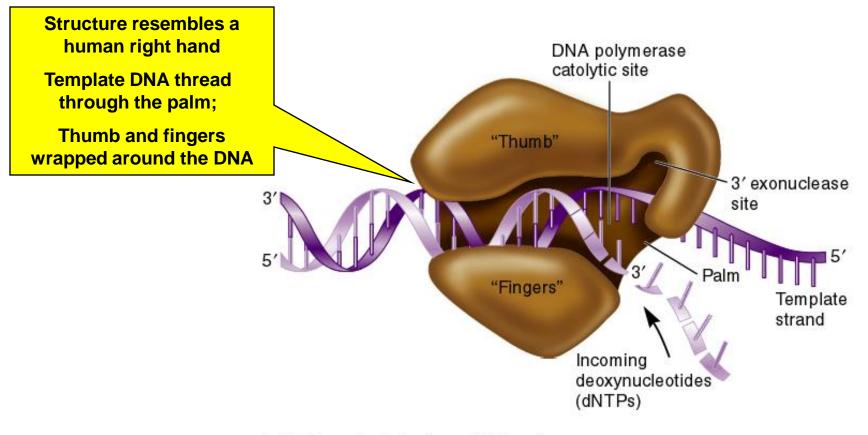
DNA Polymerases

DNA pol I


- Composed of a single polypeptide
- Removes the RNA primers and replaces them with DNA

DNA pol III

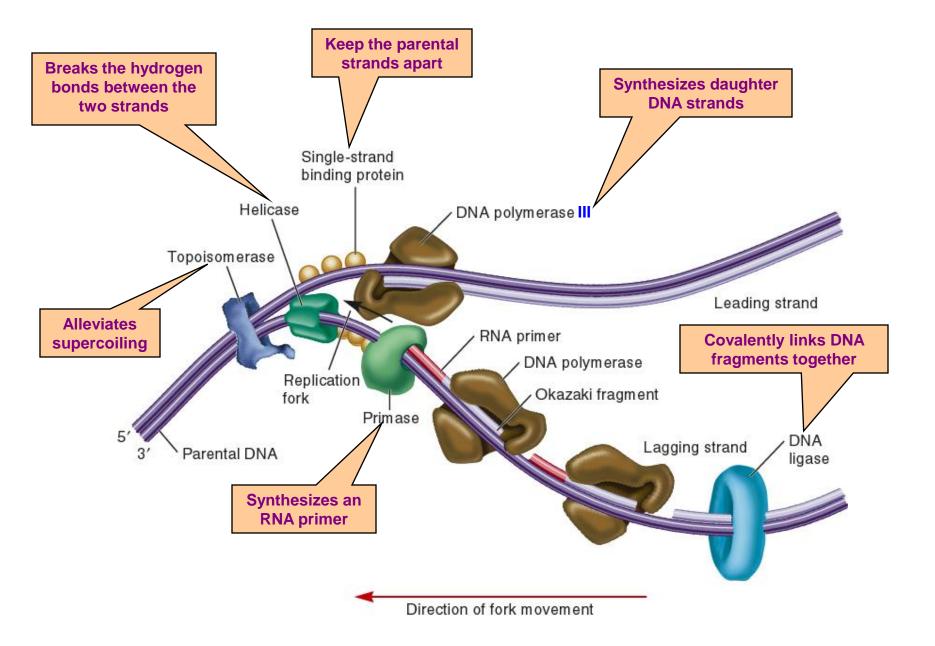
- Composed of 10 different subunits
 - **-** The α subunit synthesizes DNA
 - The other 9 fulfill other functions


 The complex of all 10 is referred to as the DNA pol 3/27/2020 II holoenzyme

DNA pol I Klenow fragment lacks 5'-->3' exonuclease

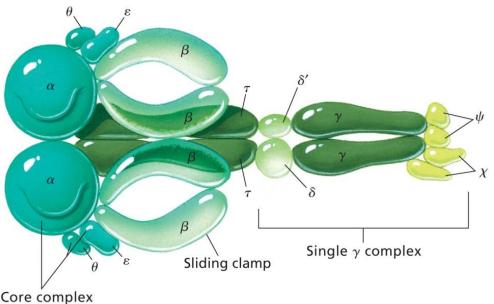
Bacterial DNA polymerases may vary in their subunit composition

However, they have the same type of catalytic subunit


(a) Schematic side view of DNA polymerase

- DNA pol I removes the RNA primers and fills the resulting gap with DNA
 - It uses its 5' to 3' exonuclease activity to digest the RNA and its 5' to 3' polymerase activity to replace it with DNA
- After the gap is filled a covalent bond is still missing

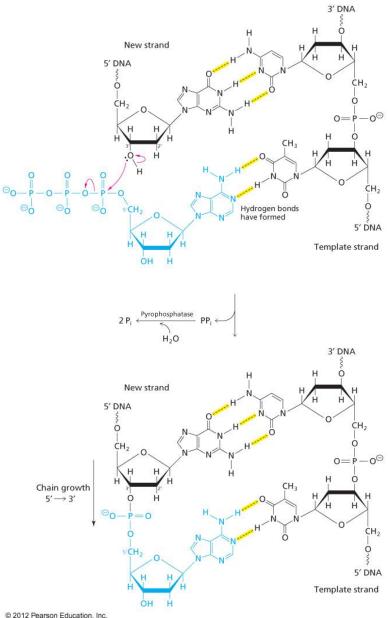
DNA ligase catalyzes a phosphodiester bond

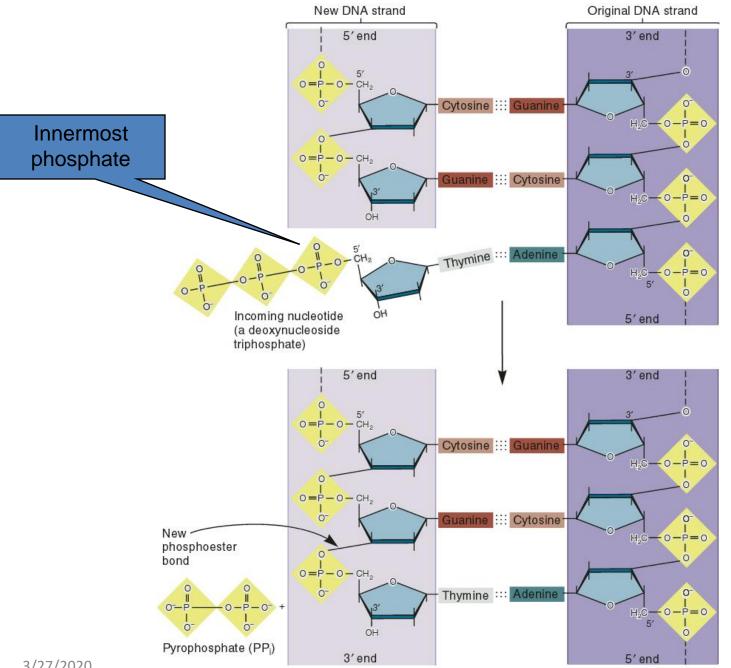

Thereby connecting the DNA fragments

- The two new daughter strands are synthesized in different ways
 - Leading strand
 - One RNA primer is made at the origin
 - DNA pol III attaches nucleotides in a 5' to 3' direction as it slides toward the opening of the replication fork
 - Lagging strand
 - Synthesis is also in the 5' to 3' direction
 - However it occurs away from the replication fork
 - Many RNA primers are required
 - DNA pol III uses the RNA primers to synthesize small DNA fragments (1000 to 2000 nucleotides each)
 - These are termed Okazaki fragments after their discoverers

Bacterial DNA Polymerase

- DNA Polymerase I and II involved in repair and polymerization of part of one strand
- DNA Polymerase III is major component of replisome
- Multi-subunit, asymmetric dimer
- Many activities


Mechanism of Action of DNA Polymerases


The Reaction of DNA Polymerase

- DNA polymerases catalyzes a phosphodiester bond between the
 - Innermost phosphate group of the incoming deoxynucleoside triphosphate
 - AND
 - 3'-OH of the sugar of the previous deoxynucleotide
- In the process, the last two phosphates of the incoming nucleotide are released
 - In the form of pyrophosphate (PP_i)

Polymerase Activity

- dNTP is substrate
- Added to 3' end of growing chain
 - PRIMER is required
- 5' \rightarrow 3' growth
- Selectivity based on Hbonding
 - TEMPLATE is required
- Pyrophosphate generated

DNA Polymerases III

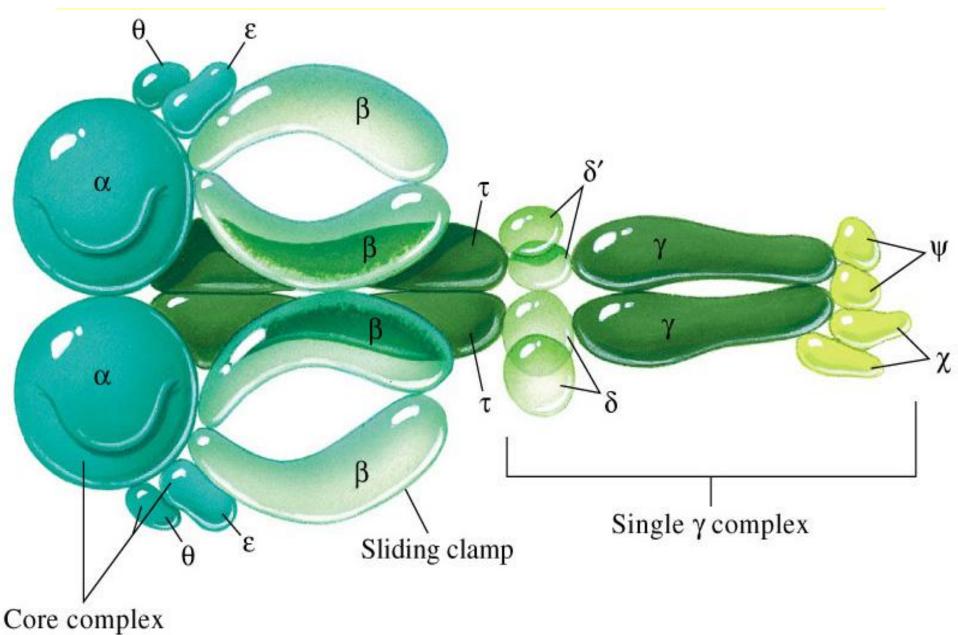
Points to be remembered.....

- 1. A core enzyme consists of the subunits of an enzyme that are needed for catalytic activity.
- 2. Some enzymes require non-protein molecules called cofactors to be bound for activity.
- 3. Cofactors can be either inorganic (e.g., metal ions and iron-sulfur clusters) or organic compounds (e.g., flavin and heme).
- 4. Organic cofactors can be either
- a. Coenzymes, which are released from the enzyme's active site during the reaction
- **b. Prosthetic groups**, which are tightly bound to an enzyme.
- **5.** Organic prosthetic groups can be covalently bound _{3/}(æ.g., biotin in enzymes such as pyruvate carboxylase).

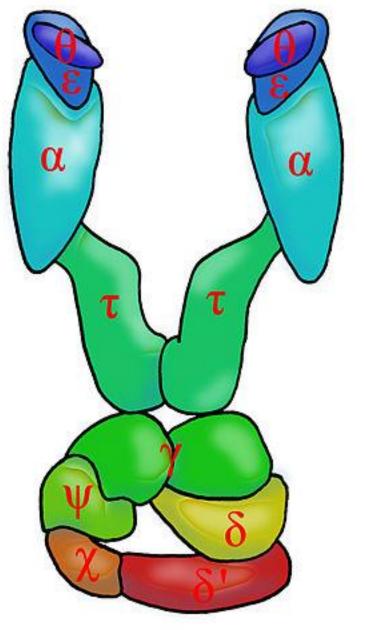
Points to be remembered.....

Enzymes that require a cofactor but do not have one bound are called apoenzymes or apoproteins.

An enzyme together with the cofactor(s) required for activity is called a holoenzyme / haloenzyme.


The term **holoenzyme** can also be applied to enzymes that contain **multiple protein subunits**, such as the **DNA polymerases**.

Here the holoenzyme is the complete complex containing all the subunits needed for activity.


DNA Polymerase III Holoenzyme

- ≻The holoenzyme is a complex of ~10 proteins of a total mass of ~900 kD.
- >The holoenzyme is organized into four types of subcomplex:
- **>**Two copies of catalytic core, each core contains:
- **Cone copy of a-subunit (5'** \rightarrow **3' Polymerase activity)**
- *****One copy of ε -subunit (3' \rightarrow 5' Proofreading exonuclease activity) *****One copy of θ -subunit (stimulate exonuclease activity)
- *****Two copies of dimerizing subunit τ , which link the two catalytic core
- > Two copies of β -clamp, responsible for holding catalytic cores on their template. Each clamp consists of a homodimer of β subunits, the β ring \rightarrow ensures processivity
- > One copy of clamp loader $\rightarrow \gamma$ complex: a group of five proteins, places clamp on DNA ($\gamma \delta \delta' \chi \psi$)

DNA Polymerase III Holoenzyme (Replicase)

Schematic picture of *DNA polymerase III** (with subunits).

SUMMARY

DNAPIII holoenzyme is made up of **FOUR** types of sub-complexes:

Sub-complex 1 2 DNA Pol III enzymes, each comprising α, ε and θ subunits. > the α subunit (encoded by the *dnaE* gene) has the polymerase activity. > the ε subunit (*dnaQ*) has 3'→5' exonuclease activity. > the θ subunit (*holE*) stimulates the ε subunit's proofreading.

Sub-complex 2

2 β units (*dnaN*) which act as sliding DNA clamps, they keep the polymerase bound to the DNA.

Sub-complex 3

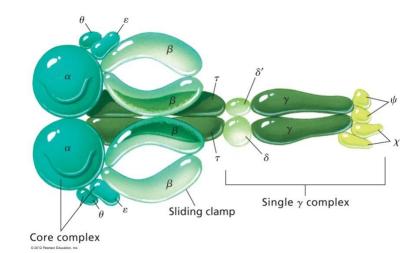
2 τ units (*dnaX*) which act to dimerize two of the core enzymes (α , ε , and θ subunits).

Sub-complex 4

mediate the switch from RNA primer to DNA.

1 γ unit (also *dnaX*) which acts as a clamp loader for the lagging strand Okazaki fragments, helping the two β subunits to form a unit and bind to DNA. The γ unit is made up of 5 γ subunits which include 2 γ subunits, 1 δ subunit (*holA*), and 1 δ' subunit (*holB*). The δ is involved in copying of the lagging strand. χ (*holC*) and Ψ (*holD*) which form a 1:1 complex and bind to γ or τ . χ can also

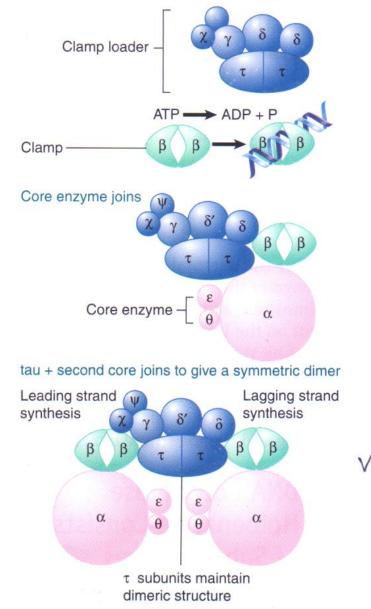
TABLE 11.2


Subunit Composition of DNA Polymerase (polIII) Holoenzyme from *E. coli*

	Subunit	Function		
	α	Synthesizes DNA		
	ε	3' to 5' proofreading (removes mismatched nucleotides)		
	θ	Accessory protein that stimulates the proofreading function		
	au	Promotes the dimerization of two polIII proteins together at the replication fork; also, stimulates DNA helicase		
	β	Clamp protein, which allows DNA polymerase to slide along the DNA without falling off		
	γ	Clamp loader protein; initially helps the clamp protein to bind to the DNA		
	δ	Accessory protein that binds to β		
	δ'	Accessory protein that stimulates γ		
	ψ	Accessory protein that stimulates γ		
3/27/202	20 X	Accessory protein that binds to single-strand binding protein		

Subunit	<i>M</i> _r	Gene	Activity
α	130 000	polC/dnaE	Polymerase
З	27 000 core	dnaQ/mutD	$3' \rightarrow 5'$ exonuclease
heta	8846	holE	?
β	40 000	dnaN	Forms sliding clamp
au	71 000	dnaX	Enhances dimerization of core; ATPase
γ	47 000	dnaX	
δ	38 700	holA	
δ'	36 900 γ γ	holB	Enhance processivity; assist
X	16 600 complex	holC	in replisome assembly
ψ	15 174	holD	

Table 20.1 Subunits of DNA polymerase III holoenzyme


© 2012 Pearson Education, Inc.

Activities of DNA Pol III

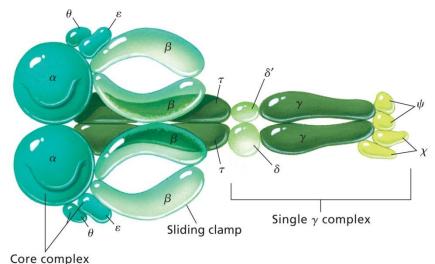
- ~900 kd
- Synthesizes <u>both</u> leading and lagging strand
- Can only extend from a primer (either RNA or DNA), cannot initiate synthesis
- 5'→3' polymerizing activity
- $3' \rightarrow 5'$ exonuclease activity
- <u>Very Weak</u> $5' \rightarrow 3'$ exonuclease activity (Biological function of this property not clear)

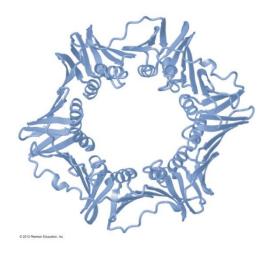
Clamp loader cleaves ATP to load clamp on DNA

DNA Polymerase III is a Processive Enzyme

- DNA polymerase III remains attached to the template as it is synthesizing the daughter strand
- This processive feature is due to several different subunits in the DNA pol III holoenzyme
 - **β** subunit is in the shape of a ring
 - It is termed the clamp protein
 - γ subunit is needed for β to initially clamp onto the DNA
 - It is termed the clamp-loader protein
 - δ, δ' and y subunits are needed for the optimal function of the a and b subunits

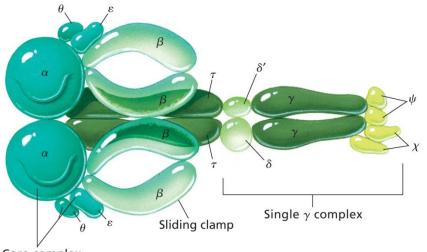
DNA Polymerase III is a Processive Enzyme


The effect of processivity is quite remarkable


In the absence of the β subunit

- DNA pol III falls off the DNA template after a few dozen nucleotides have been polymerized
- Its rate is ~ 20 nucleotides per second
- In the presence of the β subunit
 - DNA pol III stays on the DNA template long enough to polymerize up to 50,000 nucleotides
 - Its rate is ~ 750 nucleotides per second

Processivity


- Replisome stays attached to replication fork
- Beta subunit is a sliding clamp
- Higher efficiency
- Few replisomes needed

Polymerase III Proofreads

- Incorrect base pair every 10⁵ bp
- Epsilon subunit is proofreader
- Unmatched base pairs have different conformation
- $3' \rightarrow 5'$ exonuclease activity
- 99% of errors corrected here
- 99% of remaining errors are repaired

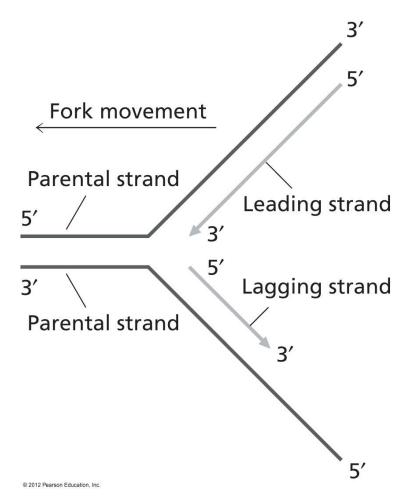
TABLE 5-I The Three Steps That Give Rise to High-Fidelity DNA Synthesis

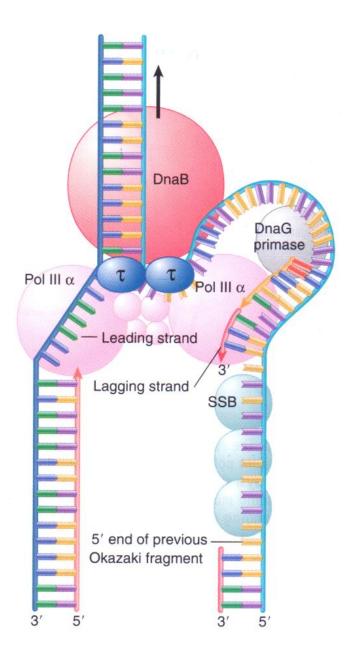
REPLICATION STEP	ERRORS PER NUCLEOTIDE POLYMERIZED
5′→3′ polymerization	1×10^5
3′→5′ exonucleolytic proofreadin	1×10^2
Strand-directed mismatch repair	1×10^2
Total	1×10^{9}

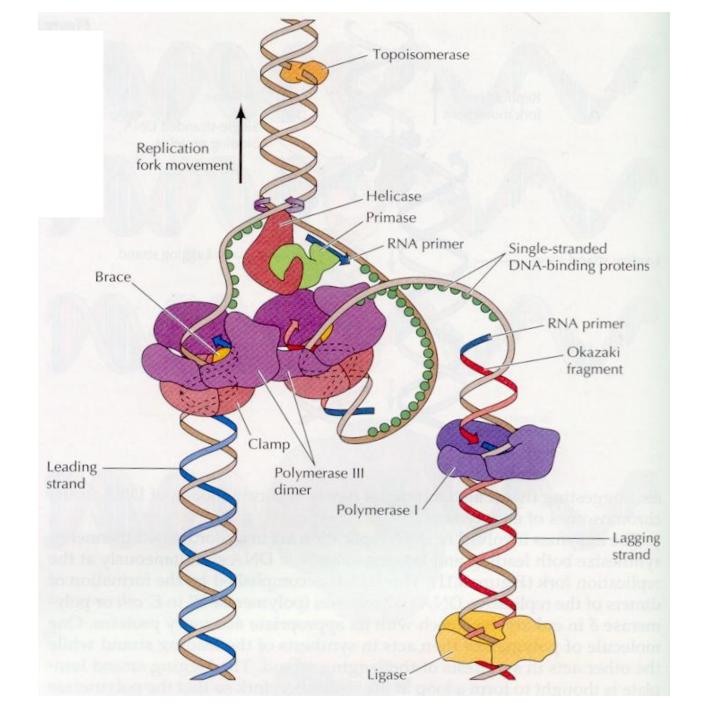
Genome Size

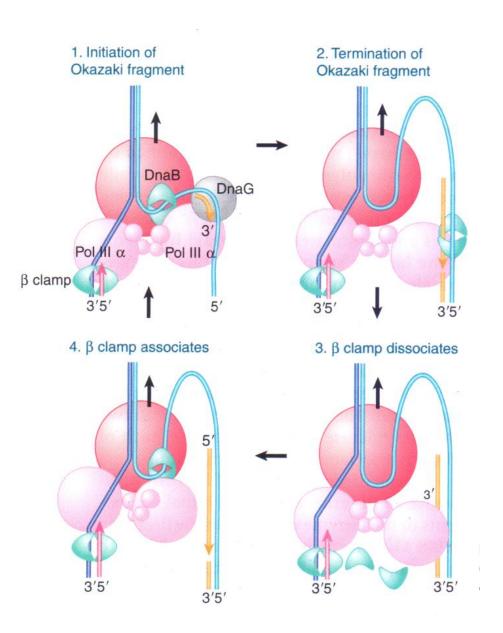
E. coli K12 4.6 x 10⁶ bp

(One error per genome per 1000 bacterial replication cycle)

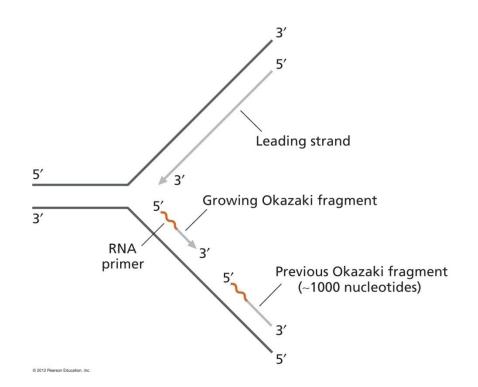

Mouse	2.8 x 10 ⁹ bp
Human	3.3 x 10 ⁹ bp

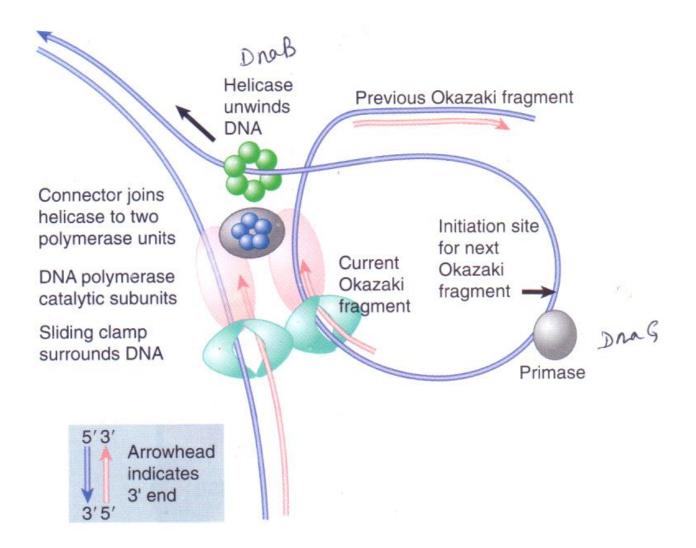

(~3 error per replication cycle)


3/27/2020

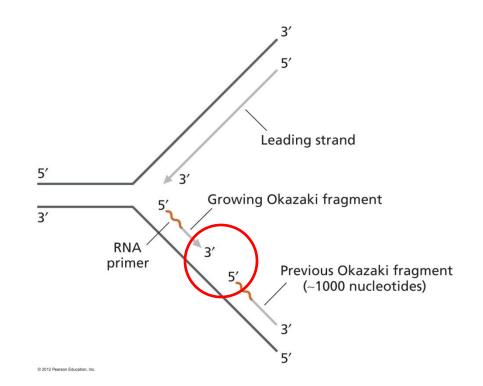

Polymerase Synthesizes Both Strands Simultaneously!

- Synthesis is $5' \rightarrow 3'$
- Leading Strand built on the 3'→5' template
- Lagging Strand built on the 5'→3' template
 - Discontinuous
 - Okazaki fragments



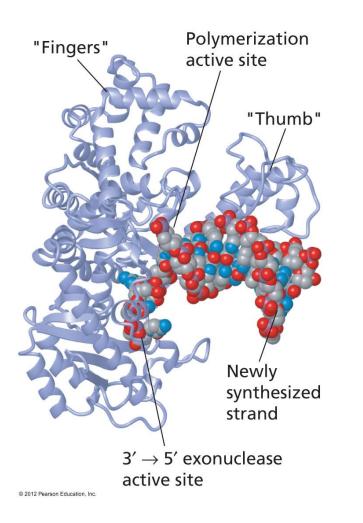


Primase


- RNA primer is needed for each polymerization
- RNA primer is made by primase enzyme
 - Part of the primosome complex
- Primosome, along with DNA Polymerase III, is part of replisome

Closing the Nick

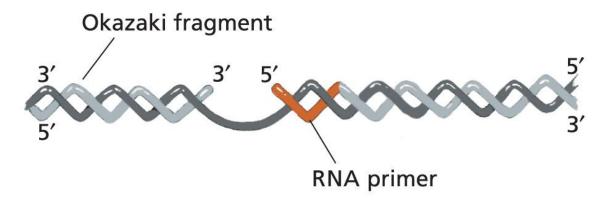
- Three actions needed
- Removal of RNA primer
 - DNA polymerase I
- Filling in the nick with DNA
 - DNA polymerase I
- Forming bond between adjacent fragments
 - DNA ligase



DNA Polymerases I

DNA Polymerase I

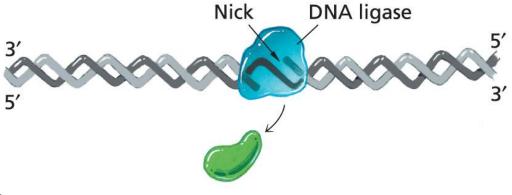
- Two activities similar to DNA polymerase III
 - $-5' \rightarrow 3'$ polymerase
 - Extend chain
 - − 3' \rightarrow 5' exonuclease
 - Proofreading
- Unique activity
 - -5'→3' exonuclease
 - Removes RNA primer


Klenow Fragment

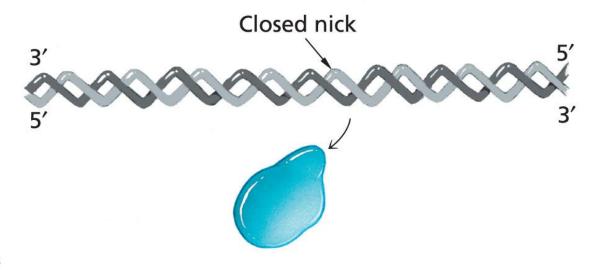
- DNA polymerase I was first discovered
 - Kornberg Nobel prize
- Can be cut into two pieces that retain activity
- Klenow fragment
 - Bigger piece with 5'→3' exonuclease removed
 - "Usable" form of DNA polymerase III

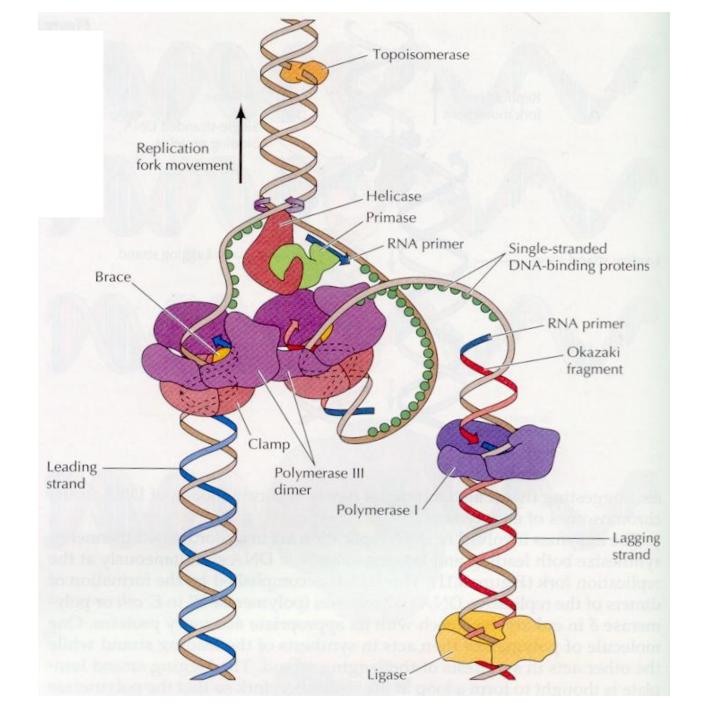

Three Step Process

(a) Completion of Okazaki fragment synthesis leaves a nick between the Okazaki fragment and the preceding RNA primer on the lagging strand.


Step 1

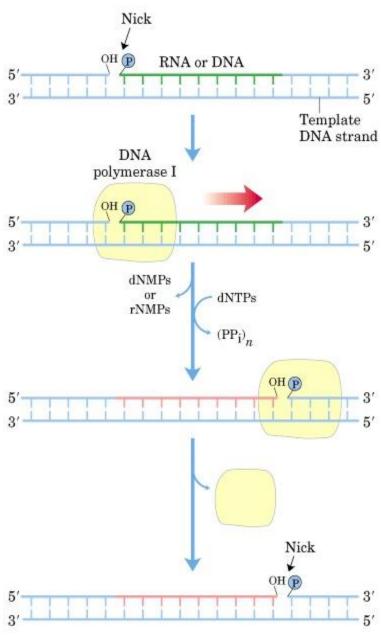
(b) DNA polymerase I extends the Okazaki fragment while its 5'→3' exonuclease activity removes the RNA primer. This process, called nick translation, results in movement of the nick along the lagging strand.


Step 2


(c) DNA polymerase I dissociates after extending the Okazaki fragment 10–12 nucleotides. DNA ligase binds to the nick.

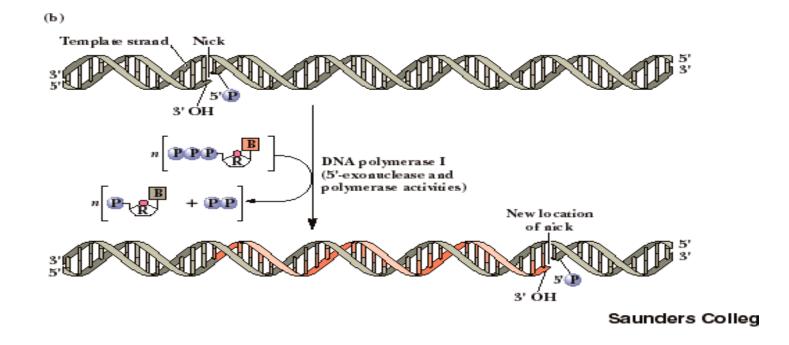
Step 3

(d) DNA ligase catalyzes formation of a phosphodiester linkage, which seals the nick, creating a continuous lagging strand. The enzyme then dissociates from the DNA.


Nick Translation Reaction

Nick Translation

Requires 5'-3' activity of DNA pol I


<u>Steps</u>

- At a nick (free 3' OH) in the DNA the DNA pol I binds and digests nucleotides in a 5'-3' direction
- 2. The DNA polymerase activity synthesizes a new DNA strand
- 3. A nick remains as the DNA pol I dissociates from the ds DNA.
- 4. The nick is closed via DNA ligase

Nick Translation 2

5'-exonuclease activity, working together with the polymerase, accomplishes "nick translation"

This activity is critical in primer removal

SUMMARY

TABLE 11.1

Proteins Involved in E. coli DNA Replication

Common Name	Function
DnaA protein	Binds to DnaA boxes within the origin to initiate DNA replication
DNA helicase (DnaB)	Separates double-stranded DNA
DnaC protein	Aids DnaA in the recruitment of helicase to the origin
Topoisomerase	Removes supercoils ahead of the replication fork
DNA primase	Synthesizes short RNA primers
DNA polymerase (polIII)	Synthesizes DNA in the leading and lagging strands
DNA polymerase (poll)	Removes RNA primers, fills in gaps
DNA ligase	Covalently attaches adjacent Okazaki fragments
Tus	Binds to <i>ter</i> sequences and prevents the advancement of the replication fork